碳技术的发展前景


  • 在追求电气特性的各种碳技术中,石墨烯是离商用化最远的技术,但在与硅半导体工艺集成方面也许最有前途。由于金刚 石本身是三维的,纳米管本身是一维的,因此二维的石墨烯晶体管能更好地匹配目前主流的二维半导体工艺。

    石墨烯缺乏能带隙使得它难于用 作数字器件,但不难用于模拟晶体管。后者正是Darpa的碳电子射频应用(CERA)的计划目标。CERA计划在2012年前展示使用石墨烯晶体管制造的 94GHz功放。

    IBM负责领导CERA研究工作。“我们已经在实验室中成功演示50GHz的石墨烯晶体管,下一步将更高,达数百 GHz。”Avouris表示。

    其它实验室也在争先恐后地用石墨烯制造高频晶体管。“我们实验室将在年内开发出基于石墨烯的很高频率 的晶体管。”佐治亚理工学院教授 WalterdeHeer透露,“针对这一应用,大部分基本的科学问题已被解决。现在我们的问题与任何新的半导体工艺一样:寻找一种兼容的电介质,然后学 会如何可靠地放置这种电介质。”

    麻省理工学院(MIT)的宽能带隙半导体专家TomasPalacios用石墨烯制造了首批模拟电 路,用于不需要能带隙的另外一种应用:倍频器。“我们一直在寻找能用今天的石墨烯制造的新器件-它将超过传统技术所能达到的性能。”Palacios表 示。

    在石墨烯成为半导体主流之前需要解决的第二个问题是缩放。化学蒸气沉积技术局限于约1英寸的晶圆,促使研究人员求助于分子束取向 附生和金刚砂热能化(通过将金刚砂加热到1100℃进而燃烧掉硅来创建石墨烯涂覆的晶圆)。

    Palacios小组则使用MIT教授 JingKong开发的CVD方法,这种方法能在涂覆了镍的硅晶圆上生长出厘米级的石墨烯薄膜。MIT研究人员通过蚀刻掉镍的方法将石墨烯薄膜从原始的晶 圆转移到其它基底上。

    这种技术能用来测试各种基底,Palacios表示,“我们能把石墨烯电路放置到你想要的任何基底上,比如金刚 砂、金刚石、氮化镓,甚至柔性塑料基底。”

    MIT已经启动了一项五年计划,目标是将石墨烯用作商用芯片材料。多学科大学研究组织 (MURI)正在与美国空军和海军合作。空军想要发展高质量、统一、无缺陷的取向附生石墨烯;表征材料;以及识别潜在化学品,压力和生物检测等应用。在海 军研究室的支持下,MURI准备表征这种材料的电气特性,并使用亚10nm尺寸的纳米结构石墨烯剪裁出创新的器件功能和电路。